Forecast Holdout Resampling
mlr_resamplings_forecast_holdout.Rd
Splits data into a training set and a test set.
Parameter ratio
determines the ratio of observation going into the training set (default: 2/3).
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():
Parameters
ratio
(numeric(1)
)
Ratio of observations to put into the training set. Mutually exclusive with parametern
.n
(integer(1)
)
Number of observations to put into the training set. If negative, the absolute value determines the number of observations in the test set. Mutually exclusive with parameterratio
.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)
for a table of available Resamplings in the running session (depending on the loaded packages).mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
mlr_resamplings_forecast_cv
Super class
mlr3::Resampling
-> ResamplingForecastHoldout
Active bindings
iters
(
integer(1)
)
Returns the number of resampling iterations, depending on the values stored in theparam_set
.
Examples
# Create a task with 10 observations
task = tsk("airpassengers")
task$filter(1:10)
# Instantiate Resampling
holdout = rsmp("forecast_holdout", ratio = 0.5)
holdout$instantiate(task)
# Individual sets:
holdout$train_set(1)
#> [1] 1 2 3 4 5
holdout$test_set(1)
#> [1] 6 7 8 9 10
# Disjunct sets:
intersect(holdout$train_set(1), holdout$test_set(1))
#> integer(0)
# Internal storage:
holdout$instance # simple list
#> $train
#> [1] 1 2 3 4 5
#>
#> $test
#> [1] 6 7 8 9 10
#>