Skip to contents

Splits data into a training set and a test set. Parameter ratio determines the ratio of observation going into the training set (default: 2/3).

Dictionary

This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():

mlr_resamplings$get("forecast_cv")
rsmp("forecast_cv")

Parameters

  • ratio (numeric(1))
    Ratio of observations to put into the training set. Mutually exclusive with parameter n.

  • n (integer(1))
    Number of observations to put into the training set. If negative, the absolute value determines the number of observations in the test set. Mutually exclusive with parameter ratio.

See also

Other Resampling: mlr_resamplings_forecast_cv

Super class

mlr3::Resampling -> ResamplingForecastHoldout

Active bindings

iters

(integer(1))
Returns the number of resampling iterations, depending on the values stored in the param_set.

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.


Method clone()

The objects of this class are cloneable with this method.

Usage

ResamplingForecastHoldout$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Create a task with 10 observations
task = tsk("airpassengers")
task$filter(1:10)

# Instantiate Resampling
holdout = rsmp("forecast_holdout", ratio = 0.5)
holdout$instantiate(task)

# Individual sets:
holdout$train_set(1)
#> [1] 1 2 3 4 5
holdout$test_set(1)
#> [1]  6  7  8  9 10

# Disjunct sets:
intersect(holdout$train_set(1), holdout$test_set(1))
#> integer(0)

# Internal storage:
holdout$instance # simple list
#> $train
#> [1] 1 2 3 4 5
#> 
#> $test
#> [1]  6  7  8  9 10
#>