Skip to contents

Measure of average magnitude‐weighted directional accuracy in forecast tasks.

Details

$$ \mathrm{MDV} = \frac{1}{n-1} \sum_{i=2}^n \lvert y_i - y_{i-1}\rvert \times \begin{cases} +1, & \text{if }\mathrm{sign}(y_i - y_{i-1}) = \mathrm{sign}(\hat y_i - \hat y_{i-1}),\\ -1, & \text{otherwise.} \end{cases} $$ where n is the number of observations.

Dictionary

This mlr3::Measure can be instantiated via the dictionary mlr3::mlr_measures or with the associated sugar function mlr3::msr():

mlr_measures$get("fcst.mdv")
msr("fcst.mdv")

Meta Information

  • Task type: “regr”

  • Range: \((-\infty, \infty)\)

  • Minimize: FALSE

  • Average: macro

  • Required Prediction: “response”

  • Required Packages: mlr3, mlr3forecast

Parameters

Empty ParamSet

References

Blaskowitz, Herwartz H (2011). “On economic evaluation of directional forecasts.” International Journal of Forecasting, 27(4), 1058–1065.

See also

Other Measure: mlr_measures_fcst.mda, mlr_measures_fcst.mdpv

Super class

mlr3::Measure -> MeasureMDV

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

MeasureMDV$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.