Forecast Holdout Resampling
mlr_resamplings_forecast_holdout.RdSplits data into a training set and a test set.
Parameter ratio determines the ratio of observation going into the training set (default: 2/3).
Dictionary
This Resampling can be instantiated via the dictionary mlr_resamplings or with the associated sugar function rsmp():
Parameters
ratio(numeric(1))
Ratio of observations to put into the training set. Mutually exclusive with parametern.n(integer(1))
Number of observations to put into the training set. If negative, the absolute value determines the number of observations in the test set. Mutually exclusive with parameterratio.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter3/evaluation_and_benchmarking.html#sec-resampling
Package mlr3spatiotempcv for spatio-temporal resamplings.
as.data.table(mlr_resamplings)for a table of available Resamplings in the running session (depending on the loaded packages).mlr3spatiotempcv for additional Resamplings for spatio-temporal tasks.
Other Resampling:
mlr_resamplings_forecast_cv
Super class
mlr3::Resampling -> ResamplingFcstHoldout
Active bindings
iters(
integer(1))
Returns the number of resampling iterations, depending on the values stored in theparam_set.
Examples
# Create a task with 10 observations
task = tsk("airpassengers")
task$filter(1:10)
# Instantiate Resampling
holdout = rsmp("forecast_holdout", ratio = 0.5)
holdout$instantiate(task)
# Individual sets:
holdout$train_set(1)
#> [1] 1 2 3 4 5
holdout$test_set(1)
#> [1] 6 7 8 9 10
# Disjunct sets:
intersect(holdout$train_set(1), holdout$test_set(1))
#> integer(0)
# Internal storage:
holdout$instance # simple list
#> $train
#> [1] 1 2 3 4 5
#>
#> $test
#> [1] 6 7 8 9 10
#>