Skip to contents

Autoregressive Integrated Moving Average Forecast (ARIMA) model. Calls forecast::Arima() from package forecast.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("fcst.arima")
lrn("fcst.arima")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevelsRange
orderuntypedc(0L, 0L, 0L)-
seasonaluntypedc(0L, 0L, 0L)-
include.meanlogicalTRUETRUE, FALSE-
include.driftlogicalFALSETRUE, FALSE-
include.constantlogicalFALSETRUE, FALSE-
lambdauntypedNULL-
biasadjlogicalFALSETRUE, FALSE-
methodcharacterCSS-MLCSS-ML, ML, CSS-
bootstraplogicalFALSETRUE, FALSE-
npathsinteger5000\([1, \infty)\)
transform.parslogicalTRUETRUE, FALSE-
fixeduntypedNULL-
inituntypedNULL-
SSinitcharacterGardner1980Gardner1980, Rossignol2011-
n.condinteger-\([1, \infty)\)
optim.methodcharacterBFGSNelder-Mead, BFGS, CG, L-BFGS-B, SANN, Brent-
optim.controluntypedlist()-
kappanumeric1e+06\((-\infty, \infty)\)

References

Hyndman, R.J., Athanasopoulos, G. (2018). Forecasting: principles and practice, 2nd edition. OTexts, Melbourne, Australia. https://OTexts.com/fpp2/.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.adam, mlr_learners_fcst.arfima, mlr_learners_fcst.auto_adam, mlr_learners_fcst.auto_arima, mlr_learners_fcst.auto_ces, mlr_learners_fcst.bats, mlr_learners_fcst.ces, mlr_learners_fcst.ets, mlr_learners_fcst.nnetar, mlr_learners_fcst.tbats

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstArima$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("fcst.arima")
print(learner)
#> 
#> ── <LearnerFcstArima> (fcst.arima): ARIMA ──────────────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response] and quantiles
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: exogenous, featureless, and missings
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("airpassengers")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# Print the model
print(learner$model)
#> Series: as.ts(task) 
#> ARIMA(0,0,0) with non-zero mean 
#> 
#> Coefficients:
#>           mean
#>       213.7083
#> s.e.    7.3018
#> 
#> sigma^2 = 5172:  log likelihood = -546.17
#> AIC=1096.33   AICc=1096.46   BIC=1101.46

# Importance method
if ("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 45942.01