Auto ARIMA model.
Calls forecast::auto.arima()
from package forecast.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “fcst”
Predict Types: “response”, “quantiles”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3forecast, forecast
Parameters
Id | Type | Default | Levels | Range |
d | integer | NA | \([0, \infty)\) | |
D | integer | NA | \([0, \infty)\) | |
max.p | integer | 5 | \([0, \infty)\) | |
max.q | integer | 5 | \([0, \infty)\) | |
max.P | integer | 2 | \([0, \infty)\) | |
max.Q | integer | 2 | \([0, \infty)\) | |
max.order | integer | 5 | \([0, \infty)\) | |
max.d | integer | 2 | \([0, \infty)\) | |
max.D | integer | 1 | \([0, \infty)\) | |
start.p | integer | 2 | \([0, \infty)\) | |
start.q | integer | 2 | \([0, \infty)\) | |
start.P | integer | 2 | \([0, \infty)\) | |
start.Q | integer | 2 | \([0, \infty)\) | |
stationary | logical | FALSE | TRUE, FALSE | - |
seasonal | logical | FALSE | TRUE, FALSE | - |
ic | character | aicc | aicc, aic, bic | - |
stepwise | logical | FALSE | TRUE, FALSE | - |
nmodels | integer | 94 | \([0, \infty)\) | |
trace | logical | FALSE | TRUE, FALSE | - |
approximation | untyped | - | - | |
method | untyped | NULL | - | |
truncate | untyped | NULL | - | |
test | character | kpss | kpss, adf, pp | - |
test.args | untyped | list() | - | |
seasonal.test | character | seas | seas, ocsb, hegy, ch | - |
seasonal.test.args | untyped | list() | - | |
allowdrift | logical | TRUE | TRUE, FALSE | - |
allowmean | logical | TRUE | TRUE, FALSE | - |
biasadj | logical | FALSE | TRUE, FALSE | - |
parallel | logical | FALSE | TRUE, FALSE | - |
num.cores | integer | 2 | \([1, \infty)\) | |
include.mean | logical | TRUE | TRUE, FALSE | - |
include.drift | logical | FALSE | TRUE, FALSE | - |
include.constant | logical | FALSE | TRUE, FALSE | - |
lambda | untyped | NULL | - | |
bootstrap | logical | FALSE | TRUE, FALSE | - |
npaths | integer | 5000 | \([1, \infty)\) | |
transform.pars | logical | TRUE | TRUE, FALSE | - |
fixed | untyped | NULL | - | |
init | untyped | NULL | - | |
SSinit | character | Gardner1980 | Gardner1980, Rossignol2011 | - |
n.cond | integer | - | \([1, \infty)\) | |
optim.method | character | BFGS | Nelder-Mead, BFGS, CG, L-BFGS-B, SANN, Brent | - |
optim.control | untyped | list() | - | |
kappa | numeric | 1e+06 | \((-\infty, \infty)\) |
References
Hyndman, J. R, Khandakar, Yeasmin (2008). “Automatic Time Series Forecasting: The forecast Package for R.” Journal of Statistical Software, 27(3), 1–22. doi:10.18637/jss.v027.i03 , https://www.jstatsoft.org/index.php/jss/article/view/v027i03.
Wang, Xiaozhe, Smith, Kate, Hyndman, Rob (2006). “Characteristic-based clustering for time series data.” Data Mining and Knowledge Discovery, 13, 335–364.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerFcst
,
mlr_learners_fcst.adam
,
mlr_learners_fcst.arfima
,
mlr_learners_fcst.arima
,
mlr_learners_fcst.auto_adam
,
mlr_learners_fcst.auto_ces
,
mlr_learners_fcst.bats
,
mlr_learners_fcst.ces
,
mlr_learners_fcst.ets
,
mlr_learners_fcst.nnetar
,
mlr_learners_fcst.tbats
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> mlr3forecast::LearnerFcst
-> mlr3forecast::LearnerFcstForecast
-> LearnerFcstAutoArima
Methods
Inherited methods
mlr3::Learner$base_learner()
mlr3::Learner$configure()
mlr3::Learner$encapsulate()
mlr3::Learner$format()
mlr3::Learner$help()
mlr3::Learner$predict()
mlr3::Learner$predict_newdata()
mlr3::Learner$print()
mlr3::Learner$reset()
mlr3::Learner$selected_features()
mlr3::Learner$train()
mlr3::LearnerRegr$predict_newdata_fast()
Examples
# Define the Learner and set parameter values
learner = lrn("fcst.auto_arima")
print(learner)
#>
#> ── <LearnerFcstAutoArima> (fcst.auto_arima): Auto ARIMA ────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response] and quantiles
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: exogenous, featureless, and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("airpassengers")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# Print the model
print(learner$model)
#> Series: as.ts(task)
#> ARIMA(1,1,0)(1,1,0)[12]
#>
#> Coefficients:
#> ar1 sar1
#> -0.2250 -0.2274
#> s.e. 0.1076 0.1081
#>
#> sigma^2 = 92.5: log likelihood = -304.98
#> AIC=615.97 AICc=616.27 BIC=623.22
# Importance method
if ("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 700.7478