Skip to contents

Auto ARIMA model. Calls forecast::auto.arima() from package forecast.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("fcst.auto_arima")
lrn("fcst.auto_arima")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “logical”, “integer”, “numeric”, “Date”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevelsRange
dintegerNA\([0, \infty)\)
DintegerNA\([0, \infty)\)
max.qinteger5\([0, \infty)\)
max.pinteger5\([0, \infty)\)
max.Pinteger2\([0, \infty)\)
max.Qinteger2\([0, \infty)\)
max.orderinteger5\([0, \infty)\)
max.dinteger2\([0, \infty)\)
max.Dinteger1\([0, \infty)\)
start.pinteger2\([0, \infty)\)
start.qinteger2\([0, \infty)\)
start.Pinteger2\([0, \infty)\)
start.Qinteger2\([0, \infty)\)
stepwiselogicalFALSETRUE, FALSE-
allowdriftlogicalTRUETRUE, FALSE-
seasonallogicalFALSETRUE, FALSE-

References

Hyndman, J. R, Khandakar, Yeasmin (2008). “Automatic Time Series Forecasting: The forecast Package for R.” Journal of Statistical Software, 27(3), 1–22. doi:10.18637/jss.v027.i03 , https://www.jstatsoft.org/index.php/jss/article/view/v027i03.

Wang, Xiaozhe, Smith, Kate, Hyndman, Rob (2006). “Characteristic-based clustering for time series data.” Data Mining and Knowledge Discovery, 13, 335–364.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.bats, mlr_learners_fcst.ets, mlr_learners_fcst.tbats

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstAutoArima$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.