Skip to contents

Exponential Smoothing State Space (ETS) model. Calls forecast::ets() from package forecast.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("fcst.ets")
lrn("fcst.ets")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”, “POSIXct”, “Date”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevelsRange
modeluntyped"ZZZ"-
dampedlogicalNULLTRUE, FALSE-
alphanumericNULL\((-\infty, \infty)\)
betanumericNULL\((-\infty, \infty)\)
gammanumericNULL\((-\infty, \infty)\)
phinumericNULL\((-\infty, \infty)\)
additive.onlylogicalFALSETRUE, FALSE-
lambdauntypedNULL-
biasadjlogicalFALSETRUE, FALSE-
loweruntypedc(rep.int(1e-04, 3), 0.8)-
upperuntypedc(rep.int(0.9999, 3), 0.98)-
opt.critcharacterliklik, amse, mse, sigma, mae-
nmseinteger3\([0, 30]\)
boundscharacterbothboth, usual, admissible-
iccharacteraiccaicc, aic, bic-
restrictlogicalTRUETRUE, FALSE-
allow.multiplicative.trendlogicalFALSETRUE, FALSE-
na.actioncharacterna.contiguousna.contiguous, na.interp, na.fail-
simulatelogicalFALSETRUE, FALSE-
bootstraplogicalFALSETRUE, FALSE-
npathsinteger5000\([1, \infty)\)

References

Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S. (2002). “A state space framework for automatic forecasting using exponential smoothing methods.” International J. Forecasting, 18(3), 439–454.

Hyndman, R.J., Akram, Md., Archibald, B. (2008). “The admissible parameter space for exponential smoothing models.” Annals of Statistical Mathematics, 60(2), 407–426.

Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2008). Forecasting with exponential smoothing: the state space approach. Springer-Verlag. http://www.exponentialsmoothing.net.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.adam, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.auto_adam, mlr_learners_fcst.auto_arima, mlr_learners_fcst.auto_ces, mlr_learners_fcst.bats, mlr_learners_fcst.ces, mlr_learners_fcst.nnetar, mlr_learners_fcst.tbats

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstEts$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("fcst.ets")
print(learner)
#> 
#> ── <LearnerFcstEts> (fcst.ets): ETS ────────────────────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response] and quantiles
#> • Feature Types: logical, integer, numeric, character, factor, ordered,
#> POSIXct, and Date
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless and missings
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("airpassengers")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# Print the model
print(learner$model)
#> ETS(M,Ad,M) 
#> 
#> Call:
#> forecast::ets(y = as.ts(task))
#> 
#>   Smoothing parameters:
#>     alpha = 0.6938 
#>     beta  = 0.0321 
#>     gamma = 1e-04 
#>     phi   = 0.9789 
#> 
#>   Initial states:
#>     l = 120.1012 
#>     b = 1.8118 
#>     s = 0.9047 0.7971 0.9166 1.0554 1.191 1.2065
#>            1.0963 0.9774 0.9928 1.0383 0.9118 0.912
#> 
#>   sigma:  0.038
#> 
#>      AIC     AICc      BIC 
#> 846.1827 855.0658 892.3409 

# Importance method
if ("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 2983.694