Skip to contents

ETS model. Calls forecast::ets() from package forecast.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("fcst.ets")
lrn("fcst.ets")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “integer”, “numeric”, “Date”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevelsRange
modeluntyped"ZZZ"-
dampedlogicalNULLTRUE, FALSE-
alphanumericNULL\((-\infty, \infty)\)
betanumericNULL\((-\infty, \infty)\)
gammanumericNULL\((-\infty, \infty)\)
phinumericNULL\((-\infty, \infty)\)
additive.onlylogicalFALSETRUE, FALSE-
lambdauntyped--
biasadjlogicalFALSETRUE, FALSE-
loweruntypedc(rep(1e-04, 3), 0.8)-
upperuntypedc(rep(0.9999, 3), 0.98)-
opt.critcharacterliklik, amse, mse, sigma, mae-
nmseinteger3\([0, 30]\)
boundscharacterbothboth, usual, admissible-
iccharacteraiccaicc, aic, bic-
restrictlogicalTRUETRUE, FALSE-
allow.multiplicative.trendlogicalFALSETRUE, FALSE-
na.actioncharacterna.contiguousna.contiguous, na.interp, na.fail-

References

Hyndman, R.J., Koehler, A.B., Snyder, R.D., Grose, S. (2002). “A state space framework for automatic forecasting using exponential smoothing methods.” International J. Forecasting, 18(3), 439–454.

Hyndman, R.J., Akram, Md., Archibald, B. (2008). “The admissible parameter space for exponential smoothing models.” Annals of Statistical Mathematics, 60(2), 407–426.

Hyndman, R.J., Koehler, A.B., Ord, J.K., Snyder, R.D. (2008). Forecasting with exponential smoothing: the state space approach. Springer-Verlag. http://www.exponentialsmoothing.net.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.auto_arima, mlr_learners_fcst.bats, mlr_learners_fcst.tbats

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstEts$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.