Skip to contents

TBATS model. Calls forecast::tbats() from package forecast.

Dictionary

This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn():

mlr_learners$get("fcst.tbats")
lrn("fcst.tbats")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “integer”, “numeric”, “Date”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevelsRange
use.box.coxlogicalNULLTRUE, FALSE-
use.trendlogicalNULLTRUE, FALSE-
use.damped.trendlogicalNULLTRUE, FALSE-
seasonal.periodsuntypedNULL-
use.arma.errorslogicalNULLTRUE, FALSE-
use.paralleluntyped--
num.coresinteger2\([1, \infty)\)
bc.lowerinteger0\((-\infty, \infty)\)
bc.upperinteger1\((-\infty, \infty)\)
biasadjlogicalFALSETRUE, FALSE-

References

De Livera, A.M., Hyndman, R.J., Snyder &, D. R (2011). “Forecasting time series with complex seasonal patterns using exponential smoothing.” Journal of the American Statistical Association, 106(496), 1513–1527.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.auto_arima, mlr_learners_fcst.bats, mlr_learners_fcst.ets

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstTbats$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.