TBATS
mlr_learners_fcst.tbats.Rd
TBATS model.
Calls forecast::tbats()
from package forecast.
Dictionary
This Learner can be instantiated via the dictionary mlr_learners or with the associated sugar function lrn()
:
Meta Information
Task type: “fcst”
Predict Types: “response”, “quantiles”
Feature Types: “integer”, “numeric”, “Date”
Required Packages: mlr3, mlr3forecast, forecast
Parameters
Id | Type | Default | Levels | Range |
use.box.cox | logical | NULL | TRUE, FALSE | - |
use.trend | logical | NULL | TRUE, FALSE | - |
use.damped.trend | logical | NULL | TRUE, FALSE | - |
seasonal.periods | untyped | NULL | - | |
use.arma.errors | logical | NULL | TRUE, FALSE | - |
use.parallel | untyped | - | - | |
num.cores | integer | 2 | \([1, \infty)\) | |
bc.lower | integer | 0 | \((-\infty, \infty)\) | |
bc.upper | integer | 1 | \((-\infty, \infty)\) | |
biasadj | logical | FALSE | TRUE, FALSE | - |
References
De Livera, A.M., Hyndman, R.J., Snyder &, D. R (2011). “Forecasting time series with complex seasonal patterns using exponential smoothing.” Journal of the American Statistical Association, 106(496), 1513–1527.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerFcst
,
mlr_learners_fcst.arfima
,
mlr_learners_fcst.arima
,
mlr_learners_fcst.auto_arima
,
mlr_learners_fcst.bats
,
mlr_learners_fcst.ets
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> mlr3forecast::LearnerFcst
-> mlr3forecast::LearnerFcstForecast
-> LearnerFcstTbats