Auto ARIMA model.
Calls forecast::auto.arima() from package forecast.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “fcst”
Predict Types: “response”, “quantiles”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3forecast, forecast
Parameters
| Id | Type | Default | Levels | Range |
| d | integer | NA | \([0, \infty)\) | |
| D | integer | NA | \([0, \infty)\) | |
| max.p | integer | 5 | \([0, \infty)\) | |
| max.q | integer | 5 | \([0, \infty)\) | |
| max.P | integer | 2 | \([0, \infty)\) | |
| max.Q | integer | 2 | \([0, \infty)\) | |
| max.order | integer | 5 | \([0, \infty)\) | |
| max.d | integer | 2 | \([0, \infty)\) | |
| max.D | integer | 1 | \([0, \infty)\) | |
| start.p | integer | 2 | \([0, \infty)\) | |
| start.q | integer | 2 | \([0, \infty)\) | |
| start.P | integer | 2 | \([0, \infty)\) | |
| start.Q | integer | 2 | \([0, \infty)\) | |
| stationary | logical | FALSE | TRUE, FALSE | - |
| seasonal | logical | FALSE | TRUE, FALSE | - |
| ic | character | aicc | aicc, aic, bic | - |
| stepwise | logical | FALSE | TRUE, FALSE | - |
| nmodels | integer | 94 | \([0, \infty)\) | |
| trace | logical | FALSE | TRUE, FALSE | - |
| approximation | untyped | - | - | |
| method | untyped | NULL | - | |
| truncate | untyped | NULL | - | |
| test | character | kpss | kpss, adf, pp | - |
| test.args | untyped | list() | - | |
| seasonal.test | character | seas | seas, ocsb, hegy, ch | - |
| seasonal.test.args | untyped | list() | - | |
| allowdrift | logical | TRUE | TRUE, FALSE | - |
| allowmean | logical | TRUE | TRUE, FALSE | - |
| biasadj | logical | FALSE | TRUE, FALSE | - |
| parallel | logical | FALSE | TRUE, FALSE | - |
| num.cores | integer | 2 | \([1, \infty)\) | |
| include.mean | logical | TRUE | TRUE, FALSE | - |
| include.drift | logical | FALSE | TRUE, FALSE | - |
| include.constant | logical | FALSE | TRUE, FALSE | - |
| lambda | untyped | NULL | - | |
| bootstrap | logical | FALSE | TRUE, FALSE | - |
| npaths | integer | 5000 | \([1, \infty)\) | |
| transform.pars | logical | TRUE | TRUE, FALSE | - |
| fixed | untyped | NULL | - | |
| init | untyped | NULL | - | |
| SSinit | character | Gardner1980 | Gardner1980, Rossignol2011 | - |
| n.cond | integer | - | \([1, \infty)\) | |
| optim.method | character | BFGS | Nelder-Mead, BFGS, CG, L-BFGS-B, SANN, Brent | - |
| optim.control | untyped | list() | - | |
| kappa | numeric | 1e+06 | \((-\infty, \infty)\) |
References
Hyndman, J. R, Khandakar, Yeasmin (2008). “Automatic Time Series Forecasting: The forecast Package for R.” Journal of Statistical Software, 27(3), 1–22. doi:10.18637/jss.v027.i03 , https://www.jstatsoft.org/index.php/jss/article/view/v027i03.
Wang, Xiaozhe, Smith, Kate, Hyndman, Rob (2006). “Characteristic-based clustering for time series data.” Data Mining and Knowledge Discovery, 13, 335–364.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerFcst,
mlr_learners_fcst.adam,
mlr_learners_fcst.arfima,
mlr_learners_fcst.arima,
mlr_learners_fcst.auto_adam,
mlr_learners_fcst.auto_ces,
mlr_learners_fcst.bats,
mlr_learners_fcst.ces,
mlr_learners_fcst.ets,
mlr_learners_fcst.nnetar,
mlr_learners_fcst.tbats
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> mlr3forecast::LearnerFcst -> mlr3forecast::LearnerFcstForecast -> LearnerFcstAutoArima
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Examples
# Define the Learner and set parameter values
learner = lrn("fcst.auto_arima")
print(learner)
#>
#> ── <LearnerFcstAutoArima> (fcst.auto_arima): Auto ARIMA ────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response] and quantiles
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: exogenous, featureless, and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("airpassengers")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# Print the model
print(learner$model)
#> Series: as.ts(task)
#> ARIMA(1,1,0)(1,1,0)[12]
#>
#> Coefficients:
#> ar1 sar1
#> -0.2250 -0.2274
#> s.e. 0.1076 0.1081
#>
#> sigma^2 = 92.5: log likelihood = -304.98
#> AIC=615.97 AICc=616.27 BIC=623.22
# Importance method
if ("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 700.7478