Skip to contents

Auto CES model. Calls smooth::auto.ces() from package smooth.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("fcst.auto_ces")
lrn("fcst.auto_ces")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”, “POSIXct”, “Date”

  • Required Packages: mlr3, mlr3forecast, smooth

Parameters

IdTypeDefaultLevels
seasonalitycharacternonenone, simple, partial, full
lagsuntyped-
regressorscharacteruseuse, select, adapt
initialcharacterbackcastingbackcasting, optimal, complete
iccharacterAICcAICc, AIC, BIC, BICc
losscharacterlikelihoodlikelihood, MSE, MAE, HAM, MSEh, TMSE, GTMSE, MSCE
holdoutlogicalFALSETRUE, FALSE
boundscharacteradmissibleadmissible, none
silentlogicalTRUETRUE, FALSE

References

Svetunkov I (2023). “Smooth forecasting with the smooth package in R.” 2301.01790, https://arxiv.org/abs/2301.01790.

Svetunkov, Ivan (2023). Forecasting and Analytics with the Augmented Dynamic Adaptive Model (ADAM), 1st edition. Chapman and Hall/CRC. doi:10.1201/9781003452652 , https://openforecast.org/adam/.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.adam, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.auto_adam, mlr_learners_fcst.auto_arima, mlr_learners_fcst.bats, mlr_learners_fcst.ces, mlr_learners_fcst.ets, mlr_learners_fcst.nnetar, mlr_learners_fcst.tbats

Super classes

mlr3::Learner -> mlr3::LearnerRegr -> mlr3forecast::LearnerFcst -> LearnerFcstAutoCes

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstAutoCes$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.