Skip to contents

Theta model. Calls forecast::theta_model() from package forecast.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("fcst.theta")
lrn("fcst.theta")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”, “quantiles”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevels
lambdauntypedNULL
biasadjlogicalFALSETRUE, FALSE

References

Assimakopoulos, Vassilis, Nikolopoulos, Konstantinos (2000). “The theta model: a decomposition approach to forecasting.” International Journal of Forecasting, 16(4), 521–530.

Hyndman, J R, Billah, Baki (2003). “Unmasking the Theta method.” International Journal of Forecasting, 19(2), 287–290.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.adam, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.auto_adam, mlr_learners_fcst.auto_arima, mlr_learners_fcst.auto_ces, mlr_learners_fcst.bats, mlr_learners_fcst.ces, mlr_learners_fcst.croston, mlr_learners_fcst.ets, mlr_learners_fcst.nnetar, mlr_learners_fcst.random_walk, mlr_learners_fcst.spline, mlr_learners_fcst.tbats

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstTheta$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("fcst.theta")
print(learner)
#> 
#> ── <LearnerFcstTheta> (fcst.theta): Theta ──────────────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response] and quantiles
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless and missings
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("airpassengers")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# Print the model
print(learner$model)
#> Theta model: as.ts(task) 
#> Call: forecast::theta_model(y = as.ts(task)) 
#> Deseasonalized
#>   alpha: 0.906 
#>   drift: 1.168 
#>   sigma^2: 55.44 

# Importance method
if ("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 3742.906