Skip to contents

Single Layer Neural Network. Calls forecast::nnetar() from package forecast.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("fcst.nnetar")
lrn("fcst.nnetar")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”, “POSIXct”, “Date”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevelsRange
puntyped--
Pinteger1\([0, \infty)\)
sizeinteger-\((-\infty, \infty)\)
repeatsinteger20\((-\infty, \infty)\)
lambdauntypedNULL-
scale.inputslogicalTRUETRUE, FALSE-

References

Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press. doi:10.1017/cbo9780511812651 .

See also

Other Learner: LearnerFcst, mlr_learners_fcst.adam, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.auto_adam, mlr_learners_fcst.auto_arima, mlr_learners_fcst.auto_ces, mlr_learners_fcst.bats, mlr_learners_fcst.ces, mlr_learners_fcst.ets, mlr_learners_fcst.tbats

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstNnetar$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.