Single Layer Neural Network.
Calls forecast::nnetar()
from package forecast.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn()
:
Meta Information
Task type: “fcst”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”, “POSIXct”, “Date”
Required Packages: mlr3, mlr3forecast, forecast
Parameters
Id | Type | Default | Levels | Range |
p | untyped | - | - | |
P | integer | 1 | \([0, \infty)\) | |
size | integer | - | \((-\infty, \infty)\) | |
repeats | integer | 20 | \((-\infty, \infty)\) | |
lambda | untyped | NULL | - | |
scale.inputs | logical | TRUE | TRUE, FALSE | - |
References
Ripley BD (1996). Pattern Recognition and Neural Networks. Cambridge University Press. doi:10.1017/cbo9780511812651 .
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)
for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerFcst
,
mlr_learners_fcst.adam
,
mlr_learners_fcst.arfima
,
mlr_learners_fcst.arima
,
mlr_learners_fcst.auto_adam
,
mlr_learners_fcst.auto_arima
,
mlr_learners_fcst.auto_ces
,
mlr_learners_fcst.bats
,
mlr_learners_fcst.ces
,
mlr_learners_fcst.ets
,
mlr_learners_fcst.tbats
Super classes
mlr3::Learner
-> mlr3::LearnerRegr
-> mlr3forecast::LearnerFcst
-> mlr3forecast::LearnerFcstForecast
-> LearnerFcstNnetar