Croston model.
Calls forecast::croston_model() from package forecast.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
Task type: “fcst”
Predict Types: “response”
Feature Types: “logical”, “integer”, “numeric”
Required Packages: mlr3, mlr3forecast, forecast
References
Croston, D J (1972). “Forecasting and stock control for intermittent demands.” Journal of the Operational Research Society, 23(3).
Shale, A E, Boylan, E J, Johnston, FR (2006). “Forecasting for intermittent demand: the estimation of an unbiased average.” Journal of the Operational Research Society, 57(5), 588–592.
Shenstone, Lydia, Hyndman, J R (2005). “Stochastic models underlying Croston's method for intermittent demand forecasting.” Journal of Forecasting, 24(6), 389–402.
Syntetos, A A, Boylan, E J (2001). “On the bias of intermittent demand estimates.” International Journal of Production Economics, 71(1-3), 457–466.
See also
Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners
Package mlr3learners for a solid collection of essential learners.
Package mlr3extralearners for more learners.
as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).mlr3pipelines to combine learners with pre- and postprocessing steps.
Package mlr3viz for some generic visualizations.
Extension packages for additional task types:
mlr3proba for probabilistic supervised regression and survival analysis.
mlr3cluster for unsupervised clustering.
mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces.
Other Learner:
LearnerFcst,
mlr_learners_fcst.adam,
mlr_learners_fcst.arfima,
mlr_learners_fcst.arima,
mlr_learners_fcst.auto_adam,
mlr_learners_fcst.auto_arima,
mlr_learners_fcst.auto_ces,
mlr_learners_fcst.bats,
mlr_learners_fcst.ces,
mlr_learners_fcst.ets,
mlr_learners_fcst.nnetar,
mlr_learners_fcst.tbats
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> mlr3forecast::LearnerFcst -> mlr3forecast::LearnerFcstForecast -> LearnerFcstCroston
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Examples
# Define the Learner and set parameter values
learner = lrn("fcst.croston")
print(learner)
#>
#> ── <LearnerFcstCroston> (fcst.croston): Croston ────────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("airpassengers")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# Print the model
print(learner$model)
#> Call: forecast::croston_model(y = as.ts(task))
#>
#> alpha: 0.1
#> method: croston
# Importance method
if ("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse
#> 16044.81