Skip to contents

Croston model. Calls forecast::croston_model() from package forecast.

Dictionary

This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():

mlr_learners$get("fcst.croston")
lrn("fcst.croston")

Meta Information

  • Task type: “fcst”

  • Predict Types: “response”

  • Feature Types: “logical”, “integer”, “numeric”

  • Required Packages: mlr3, mlr3forecast, forecast

Parameters

IdTypeDefaultLevelsRange
alphanumeric0.1\([0, 1]\)
typecharactercrostoncroston, sba, sbj-

References

Croston, D J (1972). “Forecasting and stock control for intermittent demands.” Journal of the Operational Research Society, 23(3).

Shale, A E, Boylan, E J, Johnston, FR (2006). “Forecasting for intermittent demand: the estimation of an unbiased average.” Journal of the Operational Research Society, 57(5), 588–592.

Shenstone, Lydia, Hyndman, J R (2005). “Stochastic models underlying Croston's method for intermittent demand forecasting.” Journal of Forecasting, 24(6), 389–402.

Syntetos, A A, Boylan, E J (2001). “On the bias of intermittent demand estimates.” International Journal of Production Economics, 71(1-3), 457–466.

See also

Other Learner: LearnerFcst, mlr_learners_fcst.adam, mlr_learners_fcst.arfima, mlr_learners_fcst.arima, mlr_learners_fcst.auto_adam, mlr_learners_fcst.auto_arima, mlr_learners_fcst.auto_ces, mlr_learners_fcst.bats, mlr_learners_fcst.ces, mlr_learners_fcst.ets, mlr_learners_fcst.nnetar, mlr_learners_fcst.tbats

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage


Method clone()

The objects of this class are cloneable with this method.

Usage

LearnerFcstCroston$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Define the Learner and set parameter values
learner = lrn("fcst.croston")
print(learner)
#> 
#> ── <LearnerFcstCroston> (fcst.croston): Croston ────────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response]
#> • Feature Types: logical, integer, and numeric
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless and missings
#> • Other settings: use_weights = 'error'

# Define a Task
task = tsk("airpassengers")

# Create train and test set
ids = partition(task)

# Train the learner on the training ids
learner$train(task, row_ids = ids$train)

# Print the model
print(learner$model)
#> Call: forecast::croston_model(y = as.ts(task)) 
#> 
#> alpha: 0.1 
#> method: croston 

# Importance method
if ("importance" %in% learner$properties) print(learner$importance)

# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)

# Score the predictions
predictions$score()
#> regr.mse 
#> 16044.81