Exponential smoothing state space model with Box-Cox transformation, ARMA errors, Trend and Seasonal component
(TBATS) model.
Calls forecast::tbats() from package forecast.
Dictionary
This mlr3::Learner can be instantiated via the dictionary mlr3::mlr_learners or with the associated sugar function mlr3::lrn():
Meta Information
- Task type: “fcst” 
- Predict Types: “response”, “quantiles” 
- Feature Types: “logical”, “integer”, “numeric”, “character”, “factor”, “ordered”, “POSIXct”, “Date” 
- Required Packages: mlr3, mlr3forecast, forecast 
Parameters
| Id | Type | Default | Levels | Range | 
| use.box.cox | logical | NULL | TRUE, FALSE | - | 
| use.trend | logical | NULL | TRUE, FALSE | - | 
| use.damped.trend | logical | NULL | TRUE, FALSE | - | 
| seasonal.periods | untyped | NULL | - | |
| use.arma.errors | logical | NULL | TRUE, FALSE | - | 
| use.parallel | untyped | - | - | |
| num.cores | integer | 2 | \([1, \infty)\) | |
| bc.lower | integer | 0 | \((-\infty, \infty)\) | |
| bc.upper | integer | 1 | \((-\infty, \infty)\) | |
| biasadj | logical | FALSE | TRUE, FALSE | - | 
References
De Livera, A.M., Hyndman, R.J., Snyder &, D. R (2011). “Forecasting time series with complex seasonal patterns using exponential smoothing.” Journal of the American Statistical Association, 106(496), 1513–1527.
See also
- Chapter in the mlr3book: https://mlr3book.mlr-org.com/chapters/chapter2/data_and_basic_modeling.html#sec-learners 
- Package mlr3learners for a solid collection of essential learners. 
- Package mlr3extralearners for more learners. 
- as.data.table(mlr_learners)for a table of available Learners in the running session (depending on the loaded packages).
- mlr3pipelines to combine learners with pre- and postprocessing steps. 
- Package mlr3viz for some generic visualizations. 
- Extension packages for additional task types: - mlr3proba for probabilistic supervised regression and survival analysis. 
- mlr3cluster for unsupervised clustering. 
 
- mlr3tuning for tuning of hyperparameters, mlr3tuningspaces for established default tuning spaces. 
Other Learner:
LearnerFcst,
mlr_learners_fcst.adam,
mlr_learners_fcst.arfima,
mlr_learners_fcst.arima,
mlr_learners_fcst.auto_adam,
mlr_learners_fcst.auto_arima,
mlr_learners_fcst.auto_ces,
mlr_learners_fcst.bats,
mlr_learners_fcst.ces,
mlr_learners_fcst.ets,
mlr_learners_fcst.nnetar
Super classes
mlr3::Learner -> mlr3::LearnerRegr -> mlr3forecast::LearnerFcst -> mlr3forecast::LearnerFcstForecast -> LearnerFcstTbats
Methods
Inherited methods
mlr3::Learner$base_learner()mlr3::Learner$configure()mlr3::Learner$encapsulate()mlr3::Learner$format()mlr3::Learner$help()mlr3::Learner$predict()mlr3::Learner$predict_newdata()mlr3::Learner$print()mlr3::Learner$reset()mlr3::Learner$selected_features()mlr3::Learner$train()mlr3::LearnerRegr$predict_newdata_fast()
Examples
# Define the Learner and set parameter values
learner = lrn("fcst.tbats")
print(learner)
#> 
#> ── <LearnerFcstTbats> (fcst.tbats): TBATS ──────────────────────────────────────
#> • Model: -
#> • Parameters: list()
#> • Packages: mlr3, mlr3forecast, and forecast
#> • Predict Types: [response] and quantiles
#> • Feature Types: logical, integer, numeric, character, factor, ordered,
#> POSIXct, and Date
#> • Encapsulation: none (fallback: -)
#> • Properties: featureless and missings
#> • Other settings: use_weights = 'error'
# Define a Task
task = tsk("airpassengers")
# Create train and test set
ids = partition(task)
# Train the learner on the training ids
learner$train(task, row_ids = ids$train)
# Print the model
print(learner$model)
#> TBATS(0, {0,0}, 1, {<12,5>})
#> 
#> Call: forecast::tbats(y = as.ts(task))
#> 
#> Parameters
#>   Lambda: 0
#>   Alpha: 0.6705538
#>   Beta: 0.04675065
#>   Damping Parameter: 1
#>   Gamma-1 Values: 0.004508484
#>   Gamma-2 Values: 0.01178641
#> 
#> Seed States:
#>               [,1]
#>  [1,]  4.808973955
#>  [2,] -0.006979784
#>  [3,] -0.132575268
#>  [4,]  0.049822202
#>  [5,] -0.009852127
#>  [6,]  0.007714254
#>  [7,]  0.001576272
#>  [8,]  0.035970508
#>  [9,]  0.062976543
#> [10,] -0.025967892
#> [11,] -0.036114544
#> [12,] -0.020072721
#> attr(,"lambda")
#> [1] 2.747722e-08
#> 
#> Sigma: 0.03474871
#> AIC: 846.5215
# Importance method
if ("importance" %in% learner$properties) print(learner$importance)
# Make predictions for the test rows
predictions = learner$predict(task, row_ids = ids$test)
# Score the predictions
predictions$score()
#> regr.mse 
#> 1761.171